A PM2.5 Concentration Prediction Model Based on CART–BLS

نویسندگان

چکیده

With the development of urbanization, hourly PM2.5 concentration in air is constantly changing. In order to improve accuracy prediction, a prediction model based on Classification and Regression Tree (CART) Broad Learning System (BLS) was constructed. Firstly, CART algorithm used segment dataset hierarchical way obtain subset with similar characteristics. Secondly, BLS trained by using data each subset, validation error minimized adjusting window number mapping layer network. Finally, for leaf tree, global local path from root node are compared, smallest selected. The collected this paper come Chine Meteorological Historical Data website. We selected historical Huaita monitoring station Xuzhou city experimental analysis, which included pollutant content meteorological data. Experimental results show that effect CART–BLS better than RF, V-SVR, seasonal models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

Fuzzy Model based Prediction of Ground-Level Ozone Concentration

Ground-level ozone is a dangerous pollutant for which the prediction of the concentration could be of great importance. In this paper, we present and compare three fuzzy models aiming the forecasting of ground-level ozone concentration. The models apply Takagi-Sugeno, respective LESFRI fuzzy inference techniques and were generated using the ANFIS method of the Matlab’s Fuzzy Logic ToolBox, resp...

متن کامل

Nanofluid Thermal Conductivity Prediction Model Based on Artificial Neural Network

Heat transfer fluids have inherently low thermal conductivity that greatly limits the heat exchange efficiency. While the effectiveness of extending surfaces and redesigning heat exchange equipments to increase the heat transfer rate has reached a limit, many research activities have been carried out attempting to improve the thermal transport properties of the fluids by adding more thermally c...

متن کامل

Providing a Link Prediction Model based on Structural and Homophily Similarity in Social Networks

In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...

متن کامل

Short-Term Coalmine Gas Concentration Prediction Based on Wavelet Transform

It is well known that coalmine gas concentration forecasting is very significant to ensure the safety of mining. Owing to the high-frequency, non-stationary, fluctuations, and chaotic properties of the gas concentration time series, a gas concentration forecasting model utilizing the original raw data often leads to an inability to provide satisfying forecast results. A hybrid forecasting model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Atmosphere

سال: 2022

ISSN: ['2073-4433']

DOI: https://doi.org/10.3390/atmos13101674